

Energy Efficient Injection Molding Operation

Babu Joseph Edison

Vishu Shah Consultek

April 17, 2003

INJECTION MOLDING MACHINE EFFICIENCIES

By

Babu Joseph Southern California Edison Company April 17, 2003

Machine Types

• HYDRAULIC MACHINES

FIXED VOLUME PUMPS

VARIABLE VOLUME PUMPS

VARIABLE SPEED PUMPS

SEMIHYDRAULIC MACHINES

HYBRID MACHINES

PARTIAL ELECTRICS

• ALL ELECTRIC MACHINES

Energy Efficiency

- EFFICIENCY KWH / KG OF POLYSTYRENE
- 1 KWH / KG = 45.4 KWH / 100 POUNDS

Machine Size and Production Rate

• EFFICIENCY IMPROVES AS PRODUCTION RATE IMPROVES

550 TON MACHINE: (Milacron Data)

Prod. Rate	HYDRAULIC	ALL ELE.
(POUNDS/HR)		
100	38 KWH/100 LBS	16 KWH/100 LBS
	0.84 KWH/KG	0.35 KWH/KG
500	24 KWH/100 LBS	10 KWH/100 LBS
	0.22 KWH/KG	0.53 KWH/KG

CONTROLLED STUDIES BY SCE

<u>390 TON</u>		<u>240 TON</u>		
<u>HYD</u>	ALL ELE	<u>HYD</u>	<u>ALL ELE</u>	
39.6 KW	11.9 KW	18.7 KW	4.7 KW	
465 GR/SH	465 GR/SH	173 GR/SH	173 GR/SH	
105 LBS/HR	130 LBS/HR	50 LBS/HR	44 LBS/HR	
0.83 кwн/кg	0.199 кwн/кg	0.929 кwн/кg	0.21 кwн/кg	

Preliminary Injection Molder Monitoring Results

									14.6000
	Machine	Туре	SP Usage	Shot Wt (g)	Cycle Usage (Wh)	Cycle Time (Sec)	Capacity +ag.	EW.	Keigh C,
	CB390	VV	0.63	660.5	416.3	42.56	390	35.21	0.63
	CB500	VV	0.444	1658	736	55.86	500	47.43	0.444
	F101	Std	1.22	56.7	68.32	11.0	170		1 and a star
	F102	Std	1.22	53.9	65.85	12.4	170		
	F103	Std	0.97	79.4	77.31	12.9	200		
	F114	VV	0.55	204.1	99.1	8.8			
	F210	vv_	0.51	187.1	95.46	15.5	350		
oih. ISG . 39	ME-1	ſ Std ∽ [ixed 0.83	465	385.10	35.0	390		
AC - 390	ME-2	AE	, 0.199	465	92.48	28.0	390		
10. 280	NIM-1	Std-	^{∞4} 0.929	173	161.2	31	220		
AE240	NIM-2	AE)	0.21	173	141.4	27.2	240		
	SP1	Std	0.91	25.0	22.8	22.6	-		
	SP3	Std	1.04	52.0	54.3	37.2			
	SP4	AE	39.54	3.0	119.8	125.0			
	SP8	Std	1.72	9.0	15.4	15.7	14 F - 7		
	F301	Std	1.58	55.0	87.1	12.9			
	F302	Std	1.60	47.0	75.2	12.9			
	F312	Std	1.47	59.4	87.1	12.9			

AESC, INC.

P.02

-2000 08:44

All Electric Molding Machines

- Technology developed in early 1980 in Japan
- Introduced in USA by Milacron in 1985 at NPE
- Initially available in 50 to 150 tons sizes only
- Today up to 2000 ton all-electric machines available
- Term All-Electric implies use of servomotors on both clamp and injection end
- 10 to 20% higher in cost
- Over 30 machine manufacturers offer all-electric machines
- #1 advantage.....Energy Savings

All Electric Molding Machines

Energy savings form 25% to 60%
 Repeatability, Accuracy, Consistency
 No hydraulic oil...clean
 No cooling water cost
 Quiet
 Low maintenance

- Higher cost
- Torque related issues....Long Hold times...PVC
- Unscrewing molds?
- Core Pulls?

Energy Savings 5 yr extrapolation

Comparison of Running Costs EC65 vs F60

MODEL	EC	65	vs			
Molding Condition	Parts Connector	Weight(g) 17	Resin PBT	Cycle(s) 27		Differe
Bectricity	Use kwh	Elect 1st Year	ricity Cos 3rd Year	t 5th Year	25.000	
Hyd.	6.0	4,303	12,908	21,514	20,000	
All- Electric Difference in	14 Cost	1,004 3,299	3,012 9,896	5,020 16,494	20.000	
OII	Use	1et Veer	Cost (S	i) 5th Veer	G	
Hyd.	34	84	0	169	8 15,000	
All- Electric Difference in	0 Cost	0 84	0	0 169	Le Le	
Oil Cooling Water	Use ton/day	W 1st Year	ater cost 3rd Year	(\$) 5th Year	10,000	
Hyd. All- Electric	36 0	648 0	1,944 0	<u>3,240</u> 0	5,000	
Difference in	Cost	648	1,944	3,240		
Comparis	on	Total Dif 1st Year 4,031	ference i 3rd Year 11,840	5th Year 19,902	0	1st Ye
	Running	Hours 24	Day	Month		
Condition of	Oil	245	\$/ Cal			
	Water	0.05	\$/ Top			
	Electricity	0.083	\$/ Kwh			

TOSHIBA MACHINE

MODEL	EC390		VS	Hyd.39	
Molding Condition	Parts PC Cover	Weight(g) 232	Resin PC/ ABS	Cycle(s) 51	
Flectricity	Use	Electricity Cost			
Loothing	kwh	1st Year	3rd Year	5th Year	
Hyd.	23.7	16,996	50,987	84,979	
All-Electric	5.2	3,729	11,187	18,645	
Difference i	n Cost	13,267	39,800	66,334	
0"	Lise		Oil Cost (S	6)	
Oil	cal	1st Year	3rd Year	5th Year	é
Hvd.	317	778	0	1,556	
All-Electric	0	0	0	0	
Difference in Cost		778	0	1,556	
Oil Cooling	Lise	Water cost (\$)			
Water	ton/ day	1st Year	3rd Year	5th Year	-
Hvd.	43	774	2 322	3.870	
All-Electric	0	0	0	0	
Difference i	n Cost	774	2,322	3,870	
		Total Di	fference i	n Cost(\$)	
Comparia	Comparison		3rd Year	5th Year	
Companoon		14.818	42,122	71,759	
	Running	Hours	Dav	Month	
Condition of	Time	24	30	12	
	Oil	2.45	\$/ Gal		
Simul	Water	0.05	\$/ Ton		
	Flectricity	0.083	\$/ Kwh		

TOSHIBA MACHINE

Basic Design of EC Machine

Hybrid Molding Machines

- Electric motor to drive the screw..hydraulic on clamp end
- Faster cycles (Clamp open and close speed)
- Faster Injection for thin walled parts
- Less power consumption than Hydraulic machines

Suppliers of electric and hybrid injection molding machines

Company	Electric	Hybrid
Arburg (860) 667-6500		x
Battenfeld (401) 823-0700	x	x
Demag Ergotech (440) 876-6455		x
Dima (562) 408-6899	x	x
Engel (519) 836-0220	x	
Ferromatik Milacron Europe (513) 458-8286	x	x
Ferromatik Milacron NA (513) 536-2351	x	x
Fortune/Victor (732) 214-0700	x	
Himaco (Brazil) +55 (51) 582-8000	x	
НРМ (419) 946-0222		x
Husky (905) 951-5050		x
JSW (847) 427-1100	x	x
Kawaguchi (847) 520-5314	x	
Krauss-Maffei (859) 283-0200	x	x
Maruka/Toyo (630) 953-1707		x
Meiki (847) 439-4450	x	x
MHI/Mitsubishi (630) 693-4880	x	x
Mir (978) 537-4792		x
Netstal (978) 772-5100	x	
Negri Bossi (905) 761-0831	x	x
Niigata (630) 875-0202	x	
Nissei (714) 693-3000	x	x
Plastimatix (248) 478-2100	x	
Rutil (Italy) +39 (0331) 816711		x
Sandretto (724) 775-4255		x
Sodick (847) 759-6720		x
Sumitomo (770) 447-5430	x	
Toshiba (847) 709-7202	x	
Ube (734) 741-7000	x	
Van Dorn Demag (440) 876-8960	x	x
Welltec (219) 262-5007	x	
Woojin Selex (714) 521-5280		

Suppliers of electric and hybrid injection molding machines

Source: Plastics machinery & auxiliary magazine

Side by Side Comparison

	Electric	Hybrid	Toggle /Hydraulic
Energy	Best	Better	Good/Poor
Accuracy/Repeatabil ity	Highest	High	Poor
Cleanliness	Excellent	OK	poor
Noise	Low	Medium	High
Maintenance	Low???	Medium	High
Use of existing molds	Low adaptability	Easy	Easy
Cost	High	Medium	Low

Energy savings With Variable Speed Drives

According to Plastics Technology, the **hydraulic pump-motor(s) account for 80%** of the total energy usage on an injection molding machine.

Even during periods of low hydraulic demand a maximum fixed-volume flow is produced. An example of the wasted energy at low demands is during the cooling stage of the cycle. During this cooling stage of the cycle, the motor(s) only need 20% rpm. The fixed-speed system wastes considerable amounts of energy by making inefficient use of the hydraulic pump-motor(s).

The motor conversion, from fixed-speed to variable-speed, enables the open loop injection molding process to be dependent on the demand for hydraulic fluid power. In return, there is a reduction in the use of kilowatt (kW) energy.

The basic concept of the system is simple: if the machine does not need the oil, don't pump it in the first place.

When do VSD's Make Sense.....?

When AC drive systems are installed on the right machines, running the right jobs, the results can be tremendous

- Manufactures in areas with high electrical costs
- Long cooling times
- Large machines
- Older machines
- Jobs such as large PVC fittings

Identifying Opportunities

- Injection Molding Machines Blow Molding Machines – Extruders
- Cooling Tower Fans Tower & Chilled Water Pumps
- Air Compressors
- Mechanical control of process Speed, temperature or pressure.
- Varying system requirements based on production loading.

Source: Magnum, LLC

Machines with Built-in VSD ?

- Available as optional equipment
- Engel
- Van Dorn
- Dongshin

Energy savings with Auxiliary Equipment

Auxiliary equipment account for 20% of the total energy consumption

- Dryers
- Grinders
- Mold heaters
- Chillers
- Water Management

Material Drying

Energy consumption

- Large electric heaters (Process & regeneration)
- Oversized blowers

Energy Savings Measures

- Use of hot return air for desiccant regeneration
- Example...Moton Luxor line of Dryers
- Use of sensors and controls
- Lower drying temperature when not in use
- Honeycomb rotary bed
- Crystallized molecular sieves baked on to drying wheel
- Efficient moisture absorption
- Low air pressure (smaller bower)
- Faster drying time
- No dust
- Low pressure dryer (Vacuum dryer)
- \bullet At low pressure boiling point drops to 133° F
- Low temperature and vacuum removes moisture faster

• Compressed air – no desiccant dryer

- Uses hot and compressed air to remove moisture
- No regeneration heaters

Cactus dryer

Exceptional Drying Accuracy, Efficiency, and Reliability The LUXOR dryer's twin desiccant design, with closedloop cool down and dew-point controlled bed switching, delivers consistently low (-40 F) dew points.

LUXOR's stationary desiccant automatically ramp beds mean fewer moving parts temperatures up to provide and higher reliability. efficient modulation of proc

Motan's touch screen controller provides the operator with the ultimate in operating and troubleshooting diagnostics. Add to this the positive-seating bed-switching valves and stationary desiccant beds and you have the industry's most maintainable dryer.

ATN

Drying for too long at high temperatures may lead to thermal degradation with some plastics. The MOTAN patented ATN function monitors the

material throughput against the drying time and lowers the drying temperature to prevent damage during low throughput situations. This saves heat energy and keeps the material dry until the throughput rises. The ATN system senses when production resumes, and will automatically ramp temperatures up to provide efficient modulation of process temperatures, based on material usage.

Motan's ETA-process® Reduces Operating Costs The patented ETA-process® was developed by Motan to gain maximum utilization of the heat developed in drying.

The ETA-process® heat recovery system uses the exhausted heat from the drying bin to preheat the process air coming from the dryer. Less energy is used to increase the temperature of the process air, resulting in significant reductions in operating costs (see chart below).

An additional advantage is the preliminary heat reduction of the air returning to the dry-air generator, thereby in most cases eliminating the need for an after-cooler.

Energy Savings Measures

• Natural Gas dryers

Use of Natural gas for process heat and regeneration

- Insulated Hoppers and Hoses Study shows loss of 1 to 15 °F per foot of hose
- Central Drying
- Use of sensor to switch beds
- Infrared drying with cool air
- Microwave drying
- Electromagnetic heating

Source: Regency Sales/Pneu-Con

Granulators

- Shut-down method (Watt Wattcher From IMS co.)
- Voltage reduction method (Performance Controller\MPG)
- RPM reduction

With the controller in operation, amps consumed while grinding various materials and the phase unbalance has been dramatically reduced.

50% reduction in Power consumption

Energy efficient Granulators

- Low RPM granulators
- Low RPM 2 stage screenless granulators (Bi-Cutter)
 - 10 x 13 grinder using 1 HP motor at 15/45 RPM
- Grinders equipped with energy efficient motors
- Grinders equipped with carbon steel blades

SMS granulators with deflection wedge & 3 bed knives

Bi-Cutter by Size Reduction Specialist

Mold Heaters

- Energy efficient motors
- Pulse cooling technology

Thermolators add heat to control the mold

PulseCooling removes heat to control the mold

Energy savings from reduction or elimination of thermolators

Pulse Cooling dynamics

Chillers

- High efficiency scroll compressors Vs. traditional semi-hermatic
- Winter cooler...use of cool outside air
- Power consumption in direct proportion to cooling load
- Variable speed drive

Energy savings from proper Water Management

Points to Consider at the Machine

Is the supply pressure adequate (50 psi min) Is the return pressure at least 40 psi less than the supply Adequate pipe sizing for the number of machines in service Is the GPM flow adequate to cool the molds properly

Is there an adequate number of valves on each manifold Are the supply/return manifolds in close proximity to the mold Are the valves properly sized

Source: Pulse cooling-West

Insulation Blankets

30% energy savings

Fast Start up
Even Heat Profile
Personnel Protection
Extended Heater Band Life

200 Ton Milacron

Drool protection Disk or cover

Common Sense Approach

- Hot Runners Molds
- Long hold times.....Gate freeze studies
- Multiple ejection
- Parts on the floor
- Material on the floor
- Insulated Dryer hoppers
- Leaky Dryer and air Hose
- Oil leaks
- End of jobs....turn off power

Where to find more information?

http://www.fasti.at

http://www.energysolutionscenter.org/PlasticsSuite/www/chillers/chillers.htm

http://www.cometauxiliary.com/article7.html

http://www.imscompany.com/default.htm

http://www.unitherm.com/coolnews/cn-002.htm

http://www.insul-vest.com/purge-away.htm

http://www.oekutec.de/ird-oekutec-de/presse-e-kunstst1.htm

http://www.maguire.com/products/dryers.htm

http://www.powerefficiencycorp.com/home/welcome.shtml

http://www.srscorp.com

http://www.pneu-con.com/

http://www.matsuiamerica.com/

http://www.magnumllc.com

http://www.pma-magazine.com/articles/2002/September/01

http://www.pma-magazine.com/articles/2002/November/4

http://www.pma-magazine.com/articles/2002/March/02

http://www.plasticstechnology.com/articles/200110cu4.html

http://www.immnet.com/articles?article=602

http://www.immnet.com/articles?article=581

http://www.immnet.com/articles?article=478

Where to find more information?

www.motan.com

www.pulsecooling.com

www.dri-air.com

www.novatec.com

http://www.powermiser.com/

Energy Incentives

- SPC programOld Vs. New
- Express Efficiency....Motors, Lighting etc.
- Savings by Design.....New additions, New Plants

Standard Performance Contract

A Southern California Edison 2003 Energy Efficiency Incentive Program PROPOSED

2003 SPC GENERAL DESCRIPTION

Pay-for-Performance

- Participant installs energy-efficient equipment resulting in energy [kWh] savings
- SCE pays a flat cents-per-kWh-saved incentive

Applicant

- Customer may self-sponsor, or
- A 3rd Party may apply on behalf of customer

2003 SPC COMPARISONS TO EE

Incentive Basis

- SPC: Cents per kWh saved
- EE: Dollars per "widget" installed

Installation of Equipment

- SPC: After application is approved
- EE: Prior to application submission
- Eligible Measures
 - SPC: General list of measures
 - EE: Specific list of measures

2003 SPC PROGRAM ELIGIBILITY

Customer

- Business Customers in SCE service territory
- Pays PGC or DSM surcharge on utility bill

Measures

- Retrofits or replacements only
- In general, eligible if: useful life > 5 years, energy savings can be estimated, and tools are required to install the measure
- Express Efficiency Eligibility
 - Projects eligible under SCE 2003 Express Efficiency program are not eligible for SPC

2003 SPC INCENTIVE LEVELS

Lighting Measures

- 5 cents per kWh saved

• AC & Refrigeration Measures

- 14 cents per kWh saved

Motors & Other Equipment

- 8 cents per kWh saved

- Total Funding Available for Incentives
 - \$10.8 million
 - 30% [\$3.24MM] limit for lighting incentives

2003 SPC TIMELINES

- Anticipated Implementation Date: 2nd qtr 2003
 - Program Manual and forms will be available upon implementation
 - CD may be ordered via website
 - Website: www.scespc.com
- Application Submittal Deadline 12/31/03
- Project Installation Deadline 6/1/04

2003 SPC RESOURCES

- Website <u>www.scespc.com</u>
- Your SCE Account Representative
- Phone
 - General questions: 800-736-4777
 - Technical questions: 626-302-1724
- E-mail
 - -SPC@sce.com

